Publications
Refereed Journal Articles
- Azucena, J.C.H., Wang, H., Jin, Y. and Liao, H.,
Modeling and analysis of two Normal populations based on an unlabeled paired sample
. Communications in Statistics - Simulation and Computation. 2022. DOI: https://doi.org/10.1080/03610918.2022.2134895 - Azucena, J.C.H., Alkhaleel, B., Liao, H. and Nachtmann, H.,
Hybrid simulation to support interdependence modeling of a multimodal transportation network
, Simulation Modelling Practice and Theory, Vol. 107, pp. 102237, 2021. DOI: https://doi.org/10.1016/j.simpat.2020.102237
Articles in Refereed Conference Proceedings
Published
- Aghamohammadghasem, M., Azucena, J.C.H., Hashemian, F., Liao, H., Zhang, S., and Nachtmann, H.L.,
System Simulation and Machine Learning-Based Maintenance Optimization for an Inland Waterway Transportation System
, Proceedings of the 2023 Winter Simulation Conference. San Antonio, TX. December 10-13, 2023 - Aghamohammadghasem, M., Azucena, J.C.H., Hashemian, F., Liao, H., Zhang, S., and Nachtmann, H.L.,
Preventive Maintenance Planning for an Inland Waterway Transportation System Using Deep Reinforcement Learning
, Proceedings of the IISE Annual Conference and Expo 2023. New Orleans, LA. May 20-23, 2023 - Azucena, J.C.H., Hashemian, F., Liao, H. and Pohl, E.A.,
Applying Machine Learning to Improve All-Terminal Network Reliability
, Proceedings of the 69th Annual Reliability and Maintainability Symposium. Orlando, FL. January 23-26, 2023 - Azucena, J.C.H., Wells, H., Liao, H., Sullivan, K. and Pohl, E.A.,
Applying Deep Reinforcement Learning to Improve the Reliability of an Infrastructure Network
, Proceedings of the 60th ESReDA Seminar: Advances in Modelling to Improve Network Resilience. France. May 4-5, 2022 - Bipasha, T., Azucena, J.C.H., Alkhaleel, B., Liao, H. and Nachtmann, H.,
Hybrid Simulation to Support Interdependence Modeling of a Multimodal Transportation Network
, Proceedings of the 2019 Winter Simulation Conference. National Harbor, MD. December 8-11, 2019 - Azucena, J.C.H. and Liao, H.,
Prognostic Using Dual-Stage Attention-Based Recurrent Neural Networks
, Proceedings of the 11th International Conference on Mathematical Methods in Reliability. Hong Kong. June 3-7, 2019
Working Articles
- Hashemian, F., Azucena, J.C.H., Liao, H. and Pohl, E.A.,
Convolutional Graph Neural Networks for Reliability Improvement of All-terminal Networks
. Reliability Engineering and Systems Safety. Forthcoming.